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Abstract
A matricial Darboux operator intertwining two one-dimensional stationary
Dirac Hamiltonians is constructed. This operator is such that the potential
of the second Dirac Hamiltonian, as well as the corresponding eigenfunctions,
are determined through the knowledge of only two eigenfunctions of the first
Dirac Hamiltonian. Moreover this operator, together with its adjoint and
the two Hamiltonians, generate a quadratic deformation of the superalgebra
subtending the usual supersymmetric quantum mechanics. Our developments
are illustrated in the free-particle case and the generalized Coulomb interaction.
In the latter case, a relativistic counterpart of shape invariance is observed.

PACS numbers: 02.30.Jr, 02.30.Tb, 03.65.−w, 11.30.Pb

1. Introduction

In quantum mechanics, the Schrödinger equations which can be solved by analytic methods
exclusively are rather exceptional. Therefore those methods able to enlarge the number
of such equations have attracted much attention in recent as well as less recent literature.
Three of them still remain very popular: the Darboux transformations [1] elaborated in 1882
within the mathematical framework of Sturm–Liouville differential equations, the factorization
method introduced by Schrödinger [2] in 1940 and more recently the so-called supersymmetric
quantum mechanics [3]. All of them are more or less based on the following ideas.

Let us consider the following Schrödinger Hamiltonian

H0 ≡ − d2

dx2
+ V0(x), x ∈ R or x ∈ R

+
0 (1)
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which can be factorized as follows:

H0 = L†L + α, α = constant (2)

with

L = d

dx
+ W(x). (3)

Then the eigenfunctions of the isospectral (up to the eventual creation or loss of one energy)
Hamiltonian H1 defined by

H1 ≡ LL† + α = − d2

dx2
+ V1(x) (4)

are obtained through the application of L to the eigenfunctions of H0 as it is clear from the
so-called intertwining relation

LH0 = H1L. (5)

Thus a new Schrödinger Hamiltonian H1 has been constructed and it is exactly solvable if H0

is.
We remark that the Darboux transformation has two particular features compared to [2,3].

First, the potential W(x), written as

W(x) = −d lnψ0(x)

dx
, (6)

can be constructed from a bounded or unbounded non-vanishing eigenfunction ψ0(x) of H0

(with eigenvalue α). Second, the Darboux operator L can be extended to higher order [1, 4].
Here we shall ask for the same kind of developments in the relativistic context, that

is to say, search for the operator L intertwining two one-dimensional Dirac Hamiltonians.
A partial answer has already been given in [5–8] through the supersymmetrical features of
specific Dirac Hamiltonians. Another one can also be found in [9, 10] where a relativistic
Darboux transformation has been considered but for pseudoscalar potentials only. In the
following we will not limit ourselves to such a context and will give, in section 2, the extended
intertwining operator L corresponding to a general self-adjoint potential. This operator is
constructed from two (known) solutions of the initial Dirac equation and gives rise to new
exactly solvable Dirac equations. Moreover, in section 3, we will convince ourselves from
this operator L and its adjoint that the underlying superstructure in the relativistic context is a
quadratic deformation of the sqm(2) superalgebra, the latter being, as is well known [3], the
subtending superalgebra of the (non-relativistic) supersymmetric quantum mechanics. Finally,
in section 4, we will illustrate our statements by two examples: the free-particle case and the
generalized Coulomb interaction. For the latter, we observe the relativistic counterpart of
the so-called shape invariance [11], i.e. only the values of the parameters introduced in the
expression of the potentials change.

2. Intertwining operator for the Dirac equation

Let us start with the following one-dimensional Dirac Hamiltonian:

h0 ≡ iσ2
d

dx
+ v0(x), x ∈ R or x ∈ R

+
0 (7)

where σ2 is the usual 2 × 2 Pauli matrix and v0 is real and symmetric, i.e.

v0(x) =
(
v0

11(x) v0
12(x)

v0
12(x) v0

22(x)

)
. (8)
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We assume here that h0 is a known exactly solvable Hamiltonian; in other words, all its
eigenfunctions, the two-component spinors ψ(x), as well as the corresponding energies are
analytically determined. Let us now search for a matricial operatorL satisfying the intertwining
relation similar to (5), i.e.

Lh0 = h1L (9)

with

h1 ≡ iσ2
d

dx
+ v1(x), (10)

v1(x) at this level being the unknown real and symmetric potential. The simplest operator L
we can consider is

L ≡ A
d

dx
+ B (11)

where A and B are 2 × 2 matrices with x-dependent entries. The relations (9) and (11) give
the following system:

[A, σ2] = 0, (12)

[B, σ2] − iAv0 + iv1A − σ2Ax = 0, (13)

Av0x + Bv0 − v1B − iσ2Bx = 0, (14)

the notation Ax meaning here

dA

dx
≡

( dA11
dx

dA12
dx

dA21
dx

dA22
dx

)
.

The condition (12) is equivalent to asking for A11 = A22 and A12 = −A21. The constraint (13)
enables us to fix the potential difference �v ≡ v1 − v0:

�v = (Av0 − v0A + i[B, σ2] − iσ2Ax)A
−1 (15)

up to the assumption of the existence of A−1. Finally, from (14) we can obtain the matrix B

or, in a simpler way σ , defined through B ≡ Aσ . Indeed, equation (14) is then

(v0 − iσ2σ)x + [σ, v0] + i[σ2, σ ]σ = 0. (16)

We recognize a matrix analogue of the Riccati equation. It can be linearized through the
substitution

σ = −uxu
−1 (17)

in order to become

[u−1(v0u + iσ2ux)]x = 0 (18)

which after integration leads to

h0u = iσ2ux + v0u = uλ, (19)

the matrix λ being the constant of integration.
This equation (19) is thus, formally speaking, an ordinary Dirac one up to the fact that

the solution u is no longer a spinor but a 2 × 2 matrix while the usual energy E has also been
replaced by a 2 × 2 matrix λ.

The next step is to find a convenient u that is a solution of (19) being real (and invertible)
in order to ensure the self-adjointness of v1 through (15). It is ensured in a straightforward
manner if

u = (u1, u2), λ = diag(ε1, ε2) (20)



3282 N Debergh et al

with the spinors u1 and u2 being eigenfunctions (not necessarily bounded) of the Dirac
Hamiltonian h0:

h0uj = εjuj , j = 1, 2. (21)

Having found u, the operator L given in equation (11) or

L = A

(
d

dx
− uxu

−1

)
(22)

as well as the new potential v1 (see equation (15)):

v1 = A(v0 + i[σ, σ2] − iσ2A
−1Ax)A

−1 (23)

are now fixed up to the determination of A. This matrix keeps arbitrariness: all one knows
is that it has to commute with σ2. For simplicity and comparison with the non-relativistic
context, we put A equal to the identity matrix. Equations (22) and (23) are then simplified as
follows:

L = d

dx
− uxu

−1, (24)

v1 = v0 + i[σ, σ2]. (25)

These results are the relativistic analogues of the usual Darboux transformation. We now give
another expression for what concerns v1, particularly useful for applications. Indeed, from (19)
we have

σ = −uxu
−1 = iσ2uλu

−1 − iσ2v0 (26)

and therefore

v1 = σ2v0σ2 + uλu−1 − σ2uλu
−1σ2, (27)

i.e.

v1 = σ2v0σ2 +
ε1 − ε2

detu

(
d1 d2

d2 −d1

)
, (28)

where d1 ≡ u11u22 + u12u21, d2 = u21u22 − u11u12, with uij corresponding to the element of
the matrix u at the crossing of the ith line and the j th column.

Let us close this section by noticing that, by definition, the operator L has a non-trivial
kernel since kerL = u. This implies that the action of L to an eigenspinor of h0 corresponding
to an eigenvalue different from ε1 and ε2 will give rise to an eigenspinor ofh1. The eigenspinors
of h1 related to the eigenvalues ε1 and ε2 will be obtained through v ≡ (u†)−1, that is h1v = vλ.

3. Dirac Hamiltonians and second-order supersymmetry

Let us consider here, in addition to L given in equation (24), its adjoint L† defined by

L† = − d

dx
− (uxu

−1)†. (29)

It satisfies an intertwining relation similar to equation (9):

L†h1 = h0L
†. (30)

This relation means that the operator L† realizes the transformation in the opposite direction,
i.e. the application of L† to the eigenspinors of h1 gives us the eigenspinors of h0. The operator
L†L is thus such that, applied to the eigenspinors of h0, it gives back these eigenspinors. By
definition, this is nothing other than the fact that L†L is a symmetry operator of the initial
Dirac equation h0ψ = Eψ . Moreover, because L†L is a second-order differential (matricial)
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operator while h0 is of the first order, L†L is, in fact, a polynomial of second order in h0. More
precisely, after tedious calculations, one can be convinced that

L†L = (h0 − ε1)(h0 − ε2) (31)

while a similar result holds for LL†:

LL† = (h1 − ε1)(h1 − ε2). (32)

If we now introduce the 4 × 4 matrices

H ≡
(
h0 0
0 h1

)
, Q† =

(
0 L†

0 0

)
, Q =

(
0 0
L 0

)
(33)

the relations (9) and (30)–(32) can be reformulated as

[Q,H ] = [Q†, H ] = 0, {Q,Q†} ≡ QQ† + Q†Q = (H − ε1)(H − ε2) (34)

while

Q2 = (Q†)2 = 0. (35)

Relations (34) and (35) are those of a quadratic deformation of the superalgebra sqm(2)
subtending the usual supersymmetric quantum mechanics [3]. This quadratic superalgebra
cannot be seen directly from the Dirac equation and therefore we associate it with a hidden
supersymmetry. Let us also finally notice that a superalgebra similar to the one of (34) and (35)
can also be found in the non-relativistic context when considering second-order Darboux
transformations [12].

4. Examples

Let us now turn to some examples and see how our method provides us with new exactly
solvable Dirac potentials from known ones.

4.1. The free-particle case

We consider here the potential

v0(x) = mσ1, x ∈ R. (36)

Note that it corresponds to an unusual—but convenient—realization (the usual one being
associated with v0(x) = mσ3) of the Clifford algebra subtending the one-dimensional Dirac
equation. As stated in (20), it is necessary to take account of two eigenspinors corresponding
to (36). Let u1 and u2, defined by

u1 =
(

ch(kx) + cE
k

sh(kx)

ch(kx + 2α) + cE
k

sh(kx + 2α)

)
, u2 =

( −ch(kx)
ch(kx + 2α)

)
, (37)

be such eigenfunctions (of respective eigenvalues ε1 = E and ε2 = −E) with

k =
√
m2 − E2, e2α =

√
m − k

m + k
, c = constant. (38)

The unique constraint to take care of in order to apply our method is to have a non-vanishing
determinant: detu �= 0. Here it is precisely given by

detu = 1

E

[
m + Ech(2kx + 2α) +

E2c

k
sh(2kx + 2α)

]
≡ 1

E
� (39)
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and the parameter c is such that |c| < k/E in order to satisfy this constraint. The result (28)
then gives rise to the new exactly solvable potential v1:

v1(x) = 2E2c

�
σ3 +

(
m − 2k2

�

)
σ1 (40)

whose eigenspinors can be obtained from the application of L defined in equation (24) to
the eigenspinors of the free Dirac Hamiltonian. Notice that the potential v1(x) given in
equation (40) reduces to the well known one-soliton scalar potential when c = 0.

4.2. The generalized Coulomb case

Before proceeding to this example, we would like to mention that the usual radial equation
associated with the (3+1)-dimensional Dirac equation is included in our developments. Indeed,
the standard radial equation, when coupled to scalar W(x) and vector V (x) potentials, is{

d

dx
− k

x
σ3 + [M + W(x)]σ1 + i[E − V (x)]σ2

}
ψ(x) = 0, x ∈ R

+
0 (41)

where M and E are the mass and the energy of the particle while k is related to the total angular
momentum. Equation (41) can also be written as{

iσ2
d

dx
+
k

x
σ1 + [M + W(x)]σ3 − [E − V (x)]

}
ψ(x) = 0, (42)

which coincides with h0ψ(x) = Eψ(x) with h0 defined in equation (7) and

v0
12(x) = k

x
, v0

11(x) = M + V (x) + W(x), v0
22(x) = −M + V (x) − W(x). (43)

Let us now turn to our example. It corresponds to the choices of [13]:

V (x) = α

x
, W(x) = β

x
. (44)

We refer to this example as the generalized Coulomb one because the choice (α = 1
137 , β = 0)

leads to the standard Coulomb interaction.
Let ψ(x) = (ψ1(x), ψ2(x))

T be a solution of equation (41) or equivalently (42), when
the interactions (44) are taken into account. Using standard developments, we easily find the
solutions in terms of hypergeometric confluent functions

ψ1(x) = e−λnxxµ

[
−n 1F1(1 − n, 2µ + 1; 2λnx)

−
(

−k +
αM

λn

+
βEn

λn

)
1F1(−n, 2µ + 1; 2λnx)

]
, (45)

ψ2(x) = − λn

M + En

e−λnxxµ

[
−n 1F1(1 − n, 2µ + 1; 2λnx)

+

(
−k +

αM

λn

+
βEn

λn

)
1F1(−n, 2µ + 1; 2λnx)

]
, (46)

where the parameters λn and µ are constrained by

λ2
n = M2 − E2

n, (47)

µ2 = k2 + β2 − α2 (48)

while the number n is defined by

n = −
(
αEn

λn

+
βM

λn

+ µ

)
. (49)
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This relation can be solved for the energies En as

En = −αβ ± (n + µ)
√
α2 + (n + µ)2 − β2

[α2 + (n + µ)2]
M, (50)

the plus or minus sign, as well as the values taken by n, having possibly to be chosen in order
to ensure the square-integrability of ψ1(x) and ψ2(x).

The most straightforward way to apply our method is to choose

u1 =
(
ψ1(x)

ψ2(x)

)∣∣∣∣
n=0

, u2 =
(
ψ1(x)

ψ2(x)

)∣∣∣∣
n=1

. (51)

In order to avoid heavy notation, we rewrite these choices as

u1 =
(

xµe−λ0x

c1x
µe−λ0x

)
, u2 =

(
xµe−λ1x(1 − c2x)

c1x
µe−λ1x(1 − c3x)

)
(52)

with λ0 and λ1 defined through equations (49) and (50), while

c1 = µ − k

α − β
, (53)

c2 = λ1

1 + 2µ
+
(E1 + M)(µ − k)

(α − β)(1 + 2µ)
, (54)

c3 = λ1

1 + 2µ
+
(M − E1)(α − β)

(µ − k)(1 + 2µ)
. (55)

Applying finally the result (28), we obtain a (new) exactly solvable potential of the type

v1(x) = α

x
+

[
−M +

(ε1 − ε2)

c2 − c3

(
2

x
− c2 − c3

)]
σ3

+

{
− k

x
+
(ε1 − ε2)

c2 − c3

[(
c1 − 1

c1

)
1

x
+

(
c2

c1
− c1c3

)]}
σ1. (56)

In other words, we obtain a shape-invariant potential with respect to v0(x).
A particular example corresponding to the choices

α = 1, β = −1, µ = 1, k = 1 (57)

can be useful to illustrate the results here. Indeed we have

λ0 = 0, λ1 = 4
5M, c1 = 0, c2 = 4

15M, c1c3 = 8
15M. (58)

The corresponding energies are

ε1 ≡ E0 = M, ε2 ≡ E1 = − 3
5M, (59)

ensuring that the term (αM + βEn)/λn in equations (45) and (46) with n = 0 simply
vanishes. Indeed, with the parameters α and β of equation (57), this term amounts to√
(M − En)/(M + En). For n = 0, this is vanishing since E0 = M from equation (59).

The resulting potential is given by equation (56), i.e.

v1(x) = 1

x
+

(
3M

5
+

1

x

)
σ3 +

(
2

x
− 4M

5

)
σ1. (60)

One can then determine the operator L, as defined in equation (24), connecting the
eigenfunctions related to v0(x) = (1/x) + (M − 1/x)σ3 + (1/x)σ1 and to v1(x) given in
equation (60), respectively. It is given by

L =
( d

dx − 1
x

2M
5 − 2

x

0 d
dx + 4M

5 − 2
x

)
. (61)
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Due to its definition, it is clear that Lu1 ≡ Lu2 = 0, with u1 and u2 of equation (52) with the
values (58). The definition of L also implies that, whenever applied to any of the functions
ψ(x), it will give the eigenfunctions corresponding to v1(x) as expressed in equation (60). For
instance, for n = 2, we have

L

[(
− 2

25
exp−(3M/5)x

) (
50x − 30Mx2 + 3M2x3

3(−10Mx2 + 3M2x3)

)]

= − 6

125
exp−(3M/5)x M2x2

( −10 + 3Mx

5 + 3Mx

)
, (62)

and one can directly check that this is a solution of the final equation h1ψ(x) = Eψ(x) with
E = − 4

5M . The other values of n (= 3, 4, . . .) evidently lead to similar results.
The last information we mention here is the possibility of obtaining new exactly solvable

potentials and not only shape-invariant ones. This situation arises for example when we choose

u1 =
(
ψ1(x)

ψ2(x)

)∣∣∣∣
n=1

, u2 =
(
ψ1(x)

ψ2(x)

)∣∣∣∣
n=2

. (63)

With the set of parameters (57), we obtain

v1(x) = 1

50x − 15Mx2 + 12M2x3

×
(

100 + 90Mx − 60M2x2 100 − 115Mx − 27M2x2 + 12M3x3

100 − 115Mx − 27M2x2 + 12M3x3 −120Mx + 84M2x2

)
(64)

which has a different shape with respect to v0(x) and to the v1(x) given in equation (60).
Evidently, one can determine the eigenfunctions related to this potential v1(x) defined in
equation (64) through the application of the corresponding Darboux operator L on the
eigenfunctions ψ(x) of h0. One can also proceed in a similar way with different values
of n and obtain families of new exactly solvable potentials v1(x), whose eigenfunctions will
be known through the application of the ad hoc Darboux operator on the solutions of the
generalized Coulomb problem.
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